
3 ways to live-edit your UI

How to save time when making a Dplug plug-in UI?
Discover 3 workflow loops for your product.

Meeting
Apr 5th 2022

Visual feedback loops are important.

● To try things out quickly, get out of local optimum.

● In software, to avoid rebuild times.

● Can’t judge what you can’t see!

● Nearer to the user point of view

Visual memory “buffer” is short

When a stimulus is presented, its sensory trace decays
rapidly, lasting for approximately 1000 ms. This
brief and labile memory, referred as iconic memory,
serves as a buffer before information is transferred to
working memory and executive control. -

 Graziano - Sigman (2008)

How can Dplug help?

 Here are three ways to live-edit your plug-in UI.

1. Right-click + drag

Right-clic + Drag => move a widget

Right-clic + SHIFT + Drag => resize a widget

Right-clic + Drag + CTRL => move a widget, per one user pixel increment

Right-clic + SHIFT + Drag + CTRL => resize a widget, per one user pixel increment

4 ways to do the right clic drag.

1. Right-clic + drag

1. Right-clic + drag

Plug-in host

Right-click + drag [+ SHIFT] [+ CTRL]

Code editor

Workflow:

Change widget
position in D or Wren code
(in reflow() generally)

Satisfaction

Debug Output

Read debug output for widget position.
 OR
attach in debugger and displays widget
position interactively

1. Right-clic + drag

Plug-in host

Right-click + drag [+ SHIFT] [+ CTRL]

Code editor

Workflow:

Change widget
position in D or Wren code
(in reflow() generally)

Debug Output

Read debug output for widget position.
 OR
attach in debugger and displays widget
position interactively

Warning = widget rectangle at
runtime is in “user pixels” (resized
plug-in) but you probably want the
position in scale = 1.0

Satisfaction

1. Right-clic + drag

Demo with Good Ol’ Clip It

A. Nothing to do! This is enabled when -debug is used in the D compiler (DUB default to this).

B. Read the widget position in Debug Output (else it would be for nothing)
 Windows: use DbgView.exe in Admin mode, or launch from Visual Studio
 POSIX: launch the host from command-line => convert that position to original scale (x1.0)

C. How To Disable = this is implemented in dplug.gui.element.UIElement
 =>replace the debug clause by if(false)

1. Right-clic + drag

3 Key Facts about right-clic + drag

2. Background reload

2. Background reload with ENTER

Edit background

Press ENTER

Look at result

Workflow:

Export to JPEG or
PNG

Plug-in hostImage editor

Happiness

2. Background reload

Pro-tips for background reload

A. Need setup. Provide an absolute path for images.

eg: POSIX => “/home/myuser/my/path/to/pluginname/gfx/”
 Windows => “c:\users\myuser\my\path\to\pluginname\gfx\”

B. Reload is enabled when -debug is used in the D compiler (eg: DUB default configuration)
 (so you can let the absolute path leak in the released build)

C. How to disable = this is implemented in PBRBackgroundGUI and FlatBackgroundGUI
 In FlatBackgroundGUI since yesterday actually => Dplug v12.4.6+

3. Wren workflow

3. The Wren workflow

Edit
plugin.wren

Look at result in host

Setup already explained in Dplug Tutorials 1 - Live-coding plugins UI with Wren and Wiki.

Code editor Plug-in host

Save file

Extreme
levels of
happiness

See Wren
error in debug
output

https://dplug.org/tutorials/Dplug%20Tutorials%201%20-%20Live-coding%20plugins%20UI%20with%20Wren.pdf

Wren tips

Tip 1: Put positioning in reflow(),
and all other properties in a static
setupEverything()function.

Call that from both create() and
reflow()

=> because you want to setup any kind of properties in
live-edit, but only reflow is called when changing a
script.

3. Wren workflow

Wren tips: color scheme

Tip 2: in setupEverything(), use
Wren static fields to have important
colors as constants (eg: __yellow)

You can use them in other static functions,
and have a consistent color scheme!

Note: __yellow.withAlpha(128) is a derived RGBA
 color, with opacity 0.5

Why this tip? For some reason, creating the static fields
in create() does not work reliably.

3. Wren workflow

Wren tips: color scheme

Tip 2: in setupEverything(), use
Wren static fields to have important
colors as constants (eg: __yellow)

You can use them in other static functions,
and have a consistent color scheme!

Note: __yellow.withAlpha(128) is a derived RGBA
 color, with opacity 0.5

Why this tip? For some reason, creating the static fields
in create() does not work reliably.

3. Wren workflow

BONUS TIP Start with grey colors! At UI beginning, you
can make grey colors with RGBA.grey(value, alpha)

Wren tips

Tip 3: in reflow(), call
setupEverything() if the
plug-in is built with -debug

This save CPU for final plug-in, since no property needs to be set
outside of create() for a final plugin, and setting a property invalidates the widget.

Note: Needs wren-port v1.1.2+

3. Wren workflow

Demo: plugin.wren
of a future plug-in 300 loc

3. Wren workflow

Questions?

